Switching and Diffusion Models for Gene Regulation Networks
نویسندگان
چکیده
منابع مشابه
Switching and Diffusion Models for Gene Regulation Networks
We analyze a hierarchy of three regimes for modeling gene regulation. The most complete model is a continuous time, discrete state space, Markov jump process. An intermediate ‘switch plus diffusion’ model takes the form of a stochastic differential equation driven by an independent continuous time Markov switch. In the third ‘switch plus ODE’ model the switch remains but the diffusion is remove...
متن کاملEstimating dynamic models for gene regulation networks
MOTIVATION Transcription regulation is a fundamental process in biology, and it is important to model the dynamic behavior of gene regulation networks. Many approaches have been proposed to specify the network structure. However, finding the network connectivity is not sufficient to understand the network dynamics. Instead, one needs to model the regulation reactions, usually with a set of ordi...
متن کاملSwitching Gene Regulatory Networks
A fundamental question in biology is how cells change into specific cell types with unique roles throughout development. This process can be viewed as a program prescribing the system dynamics, governed by a network of genetic interactions. Recent experimental evidence suggests that these networks are not fixed but rather change their topology as cells develop. Currently, there are limited tool...
متن کاملFault Models for Quantum Mechanical Switching Networks
This work justifies several quantum gate level fault models and discusses the causal error mechanisms thwarting correct function. A quantum adaptation of the classical test set generation technique known as constructing a fault table is given. This classical technique optimizes test plans to detect all the most common error types. This work therefore considers the set of predominate errors mode...
متن کاملModeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Multiscale Modeling & Simulation
سال: 2009
ISSN: 1540-3459,1540-3467
DOI: 10.1137/080735412